
SpackDev: Multi-Package Development with Spack

Liz Sexton-Kennedy for Chris Green, Jim Amundson, Lynn Garren & Patrick Gartung

CHEP 2019

Outline

What is Parallel Package Development and why is it important?

SpackDev: introduction, rationale and goals.

Digression—Spack as the underlying package manager for SpackDev.

SpackDev: details and interaction with Spack.

Progress and next steps.

2/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

Parallel Package Development (PPD) in HEP

Code for HEP experiments is very library and plugin oriented: we use frameworks to

connect algorithms and build a whole from many parts of different origins and

organizational responsibilities, with the exact makeup of a particular application often

being determined at runtime.

Data definitions, utility code, algorithms, and framework code are logically distinct and

often separated into different packages or repositories by category or subject matter.

Interface and other breaking changes are common, often affecting many parts of a

system—ABI compatibility is especially critical for C++ projects.

Even for bug-fixing: “minimal reproducers” are often not straightforward, and

occasionally not even possible.

“The fundamental interconnectedness of all code”1 leads to the need to develop

packages in parallel.

1Apologies to Douglas Adams.

3/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

Characteristics of a PPD System

A PPD system supports the simultaneous development of multiple packages,

including compilation, linking, testing and installation.

Either part of or using a particular underlying build system.

Usually utilizes (often centrally) pre-installed binaries and headers against which to

develop higher-level packages locally—can interact with a release / package

management system.

Manages dependencies between packages being developed and pre-installed external

packages, including versions where appropriate.

Allows the developer to choose multiple packages to develop together.

Often aware of and able to interface directly with source code management (SCM)

systems like CVS, Subversion, or Git for checkouts, branch manipulation, etc.

Enables the development cycle: code, build, test. . .

4/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

PPD Systems in the Wild

SoftRelTools (SRT): BaBar, CDF, DZero, MiniBooNE, NOvA.

Software Configuration, Release and Management (SCRAM): CMS.

Multi-Repository Build (MRB): DUNE, ICARUS, LArIAT, MicroBooNE, Muon g-2, SBND,

etc.

Configuration Management Tool (CMT): ATLAS2, LHCb3, MINERvA.

CMake-based systems: ATLAS, LHCb, LCG.

2Historical.
3Historical.

5/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

Why do we need a new PPD?

HEP build / release / package management infrastructure needs to evolve to

matching changing requirements and best practice:

Environmental constraints: need to support modern HPC systems in addition to more

traditional farms, and desktop or laptop operation.

OS based constraints (macOS SIP, RPATH / RUNPATH vs (DY)LD_LIBRARY_PATH).

Tool evolution (Autotools, CMake, Make, Ninja. . .), innovation (Conda, Homebrew, Nix,

Portage, Spack), and obsolescence (CMT, SoftRelTools, UPS).

Ongoing coordinated effort via HEP Software Foundation Packaging Groupa.

ahttps://hepsoftwarefoundation.org/workinggroups/packaging.html

So, we need a PPD that:

Is or works with modern build and packaging systems.

Can be used by many experiments.

Has applicability to modern HPC systems.

6/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

https://hepsoftwarefoundation.org/workinggroups/packaging.html

SpackDev

SpackDev is. . .

A PPD system based around the award-winninga Spackb open source multi-platform

package management system.

aR&D 100 2019 Silver Special Recognition Award.
b“Package manager for supercomputers”—https://spack.io/.

Rationale and goals.

Leverage a modern multi-platform package management system; Spack is one of the

more promising subjects of HSF Packaging Group activities.

Tighter package management system coupling =⇒ looser build system coupling.

Utilize package manager to handle dependencies, SCM interaction, per-package build

system interaction.

Aim for flexibility while ensuring binary consistency across the whole software system.

7/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

https://www.rdworldonline.com/2019-rd-100-award-winners-unveiled/
https://spack.io/

Digression: Spack

Spack highlights

>3500 package “recipes” with a formalized build language.

Sophisticated “concretizer” resolves dependency constraints (versions, variants).

Install pre-built packages from a binary cache, or build dependencies as needed.

Python, extensible.

Large and active open source community (>400 contributors)a.

aWe are regular contributors and have been accepted into the Spack organization.

Spack recipes

Recipes are Python classes (superclass determines and describes build system).

Directives specify URLs, versions, patches, variants, dependencies, conflictsa.

Override superclass methods (cmake_args(), etc.) to describe build and install details.

Define the build-time or runtime environment.

ae.g. package X v1.8 won’t compile with GCC <7.3

8/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

Digression: Spack

9/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

SpackDev: PPD with Spack

Coordinated build & test for integration, or initialize an environment for rapid build &

test cycles of a particular package.

CMake-based build coordinator insulates per-package build systems: no inherent

requirement on one package build system.

Parallel build can take advantage of multiple cores.

Configure multiple development areas using the same Spack installation and installed

package pool.

10/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

SpackDev: Details

Specify a dependency tree—“release”, with versions, variants—and packages

therefrom to develop.

Rather than being combined as a single “super package,” package builds are invoked

in (automatically calculated) dependency order by the build coordinator and installed

before being used by their dependents.

Uses Spack functionality and package recipes to:

Calculate and install dependencies.

Identify missing “intermediate” development packages for checkout to maintain build

consistency.

Determine configuration and build instructions from package recipes.

Determine the optimum build order for development packages.

Check out required packages for development from SCM systems if necessary.

11/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

SpackDev: Workflow

Set up an area to develop the specified packages:

spack dev init [--dag <install-spec-file>] <package>...

Dependencies will be found and/or installed from the currently-configured Spack setup,

and packages will be checked out if necessary.

Configure the current environment and build all checked-out packages together:

spack dev build

Start a subshell with the correct environment to execute a rapid development cycle for

one package:

spack dev build-env --cd <package>; make; ctest

12/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

SpackDev: Progress So Far

Demonstrator4 with bootstrap Spack installation.

Successfully demonstrated parallel development of selected LArSoft packages or the

full set —a suite of ~20 interdependent packages with >100 external dependencies.

Currently supports development of CMake-based packages (not an inherent limitation).

Currently recipes must not override Spack’s default build, install or test functions for

that build type (still more permissive than existing PPDs, “Packages must be built with

this build system only”).

Initializing a new development area can be slow (a few minutes for Spack to concretize

fully a system of >100 packages). Generally negligible compared to dependency build

time (see also upcoming Spack improvement, next slide).

Significant speed-up from early versions by refactoring as a Spack extension

command (recent Spack feature) vs a Python application using Spack as an external

command (multiple concretization steps).
4https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki#The-MVP-1aLArSoft-Edition

13/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki#The-MVP-1aLArSoft-Edition

Next Steps
Support other build types for development of packages (pure Make, autotools. . .).

Explore support for non-“simple” recipes.

Interface to Spack’s upcoming new, (much) faster concretizer and explore

improvements for SpackDev-specific tasks such as identification of missing

intermediate packages for build consistency.

Tools to facilitate construction of dependency trees, and storage or reuse of

precalculated trees.

Integration with other Spack facilities such as “chains,” and “environments.”

SpackDev is applicable beyond HEP since it does not inherently rely on only one

package build system =⇒ integrate into Spack proper.

More information:

The SpackDev GitHub page: https://github.com/FNALssi/spackdev.

Wiki: https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki.

14/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

https://github.com/FNALssi/spackdev
https://cdcvs.fnal.gov/redmine/projects/spack-planning/wiki

Backup slides. . .

Example Spack recipe

class Root(CMakePackage):

homepage = "https://root.cern.ch"

url = "https://root.cern.ch/download/root_v6.16.00.source.tar.gz"

version('6.16.00',

sha256='2a45055c6091adaa72b977c512f84da8ef92723c30837c7e2643eecc9c5ce4d8',

preferred=True)

patch('find-mysql.patch', level=1, when='@:6.16.00')

variant('fftw', default=False, description='Enable FFT support')

depends_on('fftw', when='+fftw')

conflicts('%intel') # Can't compile ROOT with the Intel compiler.

def cmake_args(self):

spec = self.spec

options = ['-Dfftw3:BOOL=%s' % ('ON' if '+fftw' in spec else 'OFF')]

return options

def setup_environment(self, spack_env, run_env):

run_env.set('ROOTSYS', self.prefix)

run_env.set('ROOT_VERSION', 'v{0}'.format(self.version.up_to(1)))

run_env.prepend_path('PYTHONPATH', self.prefix.lib)

if 'lz4' in self.spec:

spack_env.append_path('CMAKE_PREFIX_PATH',

self.spec['lz4'].prefix)

spack_env.set('SPACK_INCLUDE_DIRS', '', force=True)

Selected excerpts from the ROOT recipe; original at

https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/root/package.py.

15/15 CHEP 2019 Liz Sexton-Kennedy for Chris Green et al. | SpackDev: Multi-Package Development with Spack

https://github.com/spack/spack/blob/develop/var/spack/repos/builtin/packages/root/package.py

